Abstract
A line integral is exhibited which has the same value for all paths surrounding the tip of a notch in the two-dimensional strain field of an elastic or deformation-type elastic-plastic material. Appropriate integration path choices serve both to relate the integral to the near tip deformations and, in many cases, to permit its direct evaluation. This averaged measure of the near tip field leads to approximate solutions for several strain-concentration problems. Contained perfectly plastic deformation near a crack tip is analyzed for the plane-strain case with the aid of the slip-line theory. Near tip stresses are shown to be significantly elevated by hydrostatic tension, and a strain singularity results varying inversely with distance from the tip in centered fan regions above and below the tip. Approximate estimates are given for the strain intensity, plastic zone size, and crack tip opening displacement, and the important role of large geometry changes in crack blunting is noted. Another application leads to a general solution for crack tip separations in the Barenblatt-Dugdale crack model. A proof follows on the equivalence of the Griffith energy balance and cohesive force theories of elastic brittle fracture, and hardening behavior is included in a model for plane-stress yielding. A final application leads to approximate estimates of strain concentrations at smooth-ended notch tips in elastic and elastic-plastic materials.
Keywords
Affiliated Institutions
Related Publications
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
Why Fracture Mechanics? Historical Perspective Reasons for Fracture Mechanics Approach Sources of Size Effect on Structural Strength Quantification of Fracture Mechanics Size Ef...
An analysis of the conditions for rupture due to griffith cracks
The solutions for the problem of an infinite isotropic elastic solid stressed under tension T0 and containing a single internal crack of length c on the plane z=0 are given in a...
Elastic strain of freely suspended single-wall carbon nanotube ropes
We have induced large elastic strains in ropes of single-wall carbon nanotubes, using an atomic force microscope in lateral force mode. Freely suspended ropes were observed to d...
Multifunctional Alloys Obtained via a Dislocation-Free Plastic Deformation Mechanism
We describe a group of alloys that exhibit “super” properties, such as ultralow elastic modulus, ultrahigh strength, super elasticity, and super plasticity, at room temperature ...
<i>Ab initio</i>calculation of ideal strength and phonon instability of graphene under tension
Graphene-based $s{p}^{2}$-carbon nanostructures such as carbon nanotubes and nanofibers can fail near their ideal strengths due to their exceedingly small dimensions. We have ca...
Publication Info
- Year
- 1968
- Type
- article
- Volume
- 35
- Issue
- 2
- Pages
- 379-386
- Citations
- 8131
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1115/1.3601206