Abstract
Many-objective optimization refers to the optimization problems containing large number of objectives, typically more than four. Non-dominance is an inadequate strategy for convergence to the Pareto front for such problems, as almost all solutions in the population become non-dominated, resulting in loss of convergence pressure. However, for some problems, it may be possible to generate the Pareto front using only a few of the objectives, rendering the rest of the objectives redundant. Such problems may be reducible to a manageable number of relevant objectives, which can be optimized using conventional multiobjective evolutionary algorithms (MOEAs). For dimensionality reduction, most proposals in the paper rely on analysis of a representative set of solutions obtained by running a conventional MOEA for a large number of generations, which is computationally overbearing. A novel algorithm, Pareto corner search evolutionary algorithm (PCSEA), is introduced in this paper, which searches for the corners of the Pareto front instead of searching for the complete Pareto front. The solutions obtained using PCSEA are then used for dimensionality reduction to identify the relevant objectives. The potential of the proposed approach is demonstrated by studying its performance on a set of benchmark test problems and two engineering examples. While the preliminary results obtained using PCSEA are promising, there are a number of areas that need further investigation. This paper provides a number of useful insights into dimensionality reduction and, in particular, highlights some of the roadblocks that need to be cleared for future development of algorithms attempting to use few selected solutions for identifying relevant objectives.
Keywords
Affiliated Institutions
Related Publications
A New Evolutionary Algorithm for Solving Many-Objective Optimization Problems
In this paper, we focus on the study of evolutionary algorithms for solving multiobjective optimization problems with a large number of objectives. First, a comparative study of...
A fast and elitist multiobjective genetic algorithm: NSGA-II
Multi-objective evolutionary algorithms (MOEAs) that use non-dominated sorting and sharing have been criticized mainly for: (1) their O(MN/sup 3/) computational complexity (wher...
Scalable multi-objective optimization test problems
After adequately demonstrating the ability to solve different two-objective optimization problems, multi-objective evolutionary algorithms (MOEAs) must show their efficacy in ha...
Approximating the Set of Pareto-Optimal Solutions in Both the Decision and Objective Spaces by an Estimation of Distribution Algorithm
Most existing multiobjective evolutionary algorithms aim at approximating the Pareto front (PF), which is the distribution of the Pareto-optimal solutions in the objective space...
Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach
Evolutionary algorithms (EAs) are often well-suited for optimization problems involving several, often conflicting objectives. Since 1985, various evolutionary approaches to mul...
Publication Info
- Year
- 2011
- Type
- article
- Volume
- 15
- Issue
- 4
- Pages
- 539-556
- Citations
- 246
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/tevc.2010.2093579