Abstract
Using a time-dependent generalisation of the Hohenberg-Kohn-Sham formalism the energy functional is shown to be calculable by an iteration technique. The proposed method yields approximations for the particle density and the dynamic density response function of the interacting electron system; excited energy states and non-stationary time-dependent problems can also be investigated. As an example for practicability of the formalism a simple approximation for the 1s2s states of the helium atom is presented.
Keywords
Affiliated Institutions
Related Publications
Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism
The aim of this paper is to advocate the usefulness of the spin-density-functional (SDF) formalism. The generalization of the Hohenberg-Kohn-Sham scheme to and SDF formalism is ...
Density-Functional Theory for Time-Dependent Systems
A density-functional formalism comparable to the Hohenberg-Kohn-Sham theory of the ground state is developed for arbitrary time-dependent systems. It is proven that the single-p...
Time-dependent extension of the Hohenberg-Kohn-Levy energy-density functional
An energy-minimization principle based on the hydrodynamic formulation of quantum mechanics is used to develop a time-dependent energy-density functional. The external potential...
Schrödinger fluid dynamics of many-electron systems in a time-dependent density-functional framework
For an N-electron system, a connection is explored between density-functional theory and quantum fluid dynamics, through a dynamical extension of the former. First, we prove the...
Inhomogeneous Electron Gas
This work is a generalization of the Hohenberg---Kohn---Sham theory of the inhomogeneous electron gas, with emphasis on spin effects. An argument based on quantum electrodynamic...
Publication Info
- Year
- 1978
- Type
- article
- Volume
- 11
- Issue
- 24
- Pages
- 4945-4956
- Citations
- 91
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1088/0022-3719/11/24/023