Abstract

Data at ICU admission and after 24 h in the ICU were collected on 755 patients, to derive multiple logistic regression models for predicting hospital mortality. The derived models contained relatively few and easily obtained variables. The weight associated with each variable was determined objectively. There were seven admission variables, none of which were treatment dependent, and seven 24-h variables reflecting treatments and patients' conditions in the ICU. Predicted outcomes using these two models were closely correlated with actual outcome. Theoretically, a predictive model would be useful to physicians for triage decisions as well as determining aggressiveness of care through discussions with families, determining utilization of ICU facilities, and objectively comparing different ICUs. This research represents an initial attempt to develop models that are not based on subjectively determined weights.

Keywords

MedicineLogistic regressionTriageIntensive careEmergency medicineOutcome (game theory)Intensive care unitIntensive care medicineInternal medicine

Affiliated Institutions

Related Publications

Publication Info

Year
1985
Type
article
Volume
13
Issue
7
Pages
519-525
Citations
320
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

320
OpenAlex

Cite This

Stanley Lemeshow, Daniel Teres, Harris Pastides et al. (1985). A method for predicting survival and mortality of ICU patients using objectively derived weights. Critical Care Medicine , 13 (7) , 519-525. https://doi.org/10.1097/00003246-198507000-00001

Identifiers

DOI
10.1097/00003246-198507000-00001