Abstract
Crowdsourcing is the most effective means of obtaining labelled data for supervised machine learning. However, the varying expertise of crowd workers often results in noisy annotations. While traditional label aggregation methods attempt to handle label noise, they typically overlook the relationships between different data instances. Moreover, crowdsourced datasets often experience class imbalance, wherein predominant classes eclipse minority classes, hence exacerbating label accuracy issues. This paper proposed a Reliability-Weighted Bayesian Label Aggregation (RWBLA) to overcome the above challenges. First, the K-nearest neighbours (KNN) method is used to improve the label set for each instance by augmenting labels from its closest neighbours, resulting in multiple noisy label sets. Next, it improves the aggregation by assigning weights to the neighbouring labels based on worker reliability, adaptive distance, and label similarity for each instance. In addition, worker reliability is determined dynamically based on the neighbourhood information, and to handle the imbalance issue, label similarity is modified. In the end, a weighted Bayesian inference method is used to infer the correct label for each instance. The performance of the proposed approach is evaluated on 20 synthetics and three real-world crowdsourcing datasets. It shows that RWBLA consistently surpasses eight baseline label aggregations, improving aggregation accuracy by 3 % to 13 %. Moreover, in analyses utilizing imbalanced real-world crowdsourcing data, RWBLA surpassed state-of-art aggregation algorithms by 2 % to 6 %, underscoring its efficacy in situations with minor class imbalances.
Affiliated Institutions
Related Publications
Multi-Label Image Recognition With Graph Convolutional Networks
The task of multi-label image recognition is to predict a set of object labels that present in an image. As objects normally co-occur in an image, it is desirable to model the l...
Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
Deep learning with noisy labels is practically challenging, as the capacity of deep models is so high that they can totally memorize these noisy labels sooner or later during tr...
Unsupervised Feature Learning via Non-parametric Instance Discrimination
Neural net classifiers trained on data with annotated class labels can also capture apparent visual similarity among categories without being directed to do so. We study whether...
3D Mesh Labeling via Deep Convolutional Neural Networks
This article presents a novel approach for 3D mesh labeling by using deep Convolutional Neural Networks (CNNs). Many previous methods on 3D mesh labeling achieve impressive perf...
Harmony potentials for joint classification and segmentation
Hierarchical conditional random fields have been successfully applied to object segmentation. One reason is their ability to incorporate contextual information at different scal...
Publication Info
- Year
- 2025
- Type
- article
- Volume
- 14
- Pages
- e32757-e32757
- Citations
- 0
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.14201/adcaij.32757