Abstract

Scientists working with large volumes of high-dimensional data, such as global climate patterns, stellar spectra, or human gene distributions, regularly confront the problem of dimensionality reduction: finding meaningful low-dimensional structures hidden in their high-dimensional observations. The human brain confronts the same problem in everyday perception, extracting from its high-dimensional sensory inputs—30,000 auditory nerve fibers or 10 6 optic nerve fibers—a manageably small number of perceptually relevant features. Here we describe an approach to solving dimensionality reduction problems that uses easily measured local metric information to learn the underlying global geometry of a data set. Unlike classical techniques such as principal component analysis (PCA) and multidimensional scaling (MDS), our approach is capable of discovering the nonlinear degrees of freedom that underlie complex natural observations, such as human handwriting or images of a face under different viewing conditions. In contrast to previous algorithms for nonlinear dimensionality reduction, ours efficiently computes a globally optimal solution, and, for an important class of data manifolds, is guaranteed to converge asymptotically to the true structure.

Keywords

Dimensionality reductionPrincipal component analysisIsomapNonlinear dimensionality reductionMultidimensional scalingNonlinear systemCurse of dimensionalityMetric (unit)Diffusion mapComputer scienceReduction (mathematics)Artificial intelligenceSet (abstract data type)Pattern recognition (psychology)Degrees of freedom (physics and chemistry)HandwritingMathematicsMachine learningPhysics

Affiliated Institutions

Related Publications

Publication Info

Year
2000
Type
article
Volume
290
Issue
5500
Pages
2319-2323
Citations
13453
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

13453
OpenAlex

Cite This

Joshua B. Tenenbaum, Vin de Silva, John Langford (2000). A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science , 290 (5500) , 2319-2323. https://doi.org/10.1126/science.290.5500.2319

Identifiers

DOI
10.1126/science.290.5500.2319