Abstract
Here we explore a discriminative learning method on underlying generative models for the purpose of discriminating between object categories. Visual recognition algorithms learn models from a set of training examples. Generative models learn their representations by considering data from a single class. Generative models are popular in computer vision for many reasons, including their ability to elegantly incorporate prior knowledge and to handle correspondences between object parts and detected features. However, generative models are often inferior to discriminative models during classification tasks. We study a discriminative approach to learning object categories which maintains the representational power of generative learning, but trains the generative models in a discriminative manner. The discriminatively trained models perform better during classification tasks as a result of selecting discriminative sets of features. We conclude by proposing a multi-class object recognition system which initially trains object classes in a generative manner, identifies subsets of similar classes with high confusion, and finally trains models for these subsets in a discriminative manner to realize gains in classification performance.
Keywords
Affiliated Institutions
Related Publications
Unsupervised Feature Learning via Non-parametric Instance Discrimination
Neural net classifiers trained on data with annotated class labels can also capture apparent visual similarity among categories without being directed to do so. We study whether...
Object class recognition by unsupervised scale-invariant learning
We present a method to learn and recognize object class models from unlabeled and unsegmented cluttered scenes in a scale invariant manner. Objects are modeled as flexible const...
A Sparse Object Category Model for Efficient Learning and Exhaustive Recognition
We present a "parts and structure" model for object category recognition that can be learnt efficiently and in a semi-supervised manner: the model is learnt from example images ...
Object Detection With Deep Learning: A Review
Due to object detection's close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection ...
Is object localization for free? - Weakly-supervised learning with convolutional neural networks
Successful methods for visual object recognition typically rely on training datasets containing lots of richly annotated images. Detailed image annotation, e.g. by object boundi...
Publication Info
- Year
- 2005
- Type
- article
- Volume
- 1
- Pages
- 664-671
- Citations
- 56
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/cvpr.2005.25