Abstract
This paper considers the problem of applying factor analysis to non‐normal categorical variables. A Monte Carlo study is conducted where five prototypical cases of non‐normal variables are generated. Two normal theory estimators, ML and GLS, are compared to Browne's (1982) ADF estimator. A categorical variable methodology (CVM) estimator of Muthén (1984) is also considered for the most severely skewed case. Results show that ML and GLS chi‐square tests are quite robust but obtain too large values for variables that arc severely skewed and kurtotic. ADF, however, performs well. Parameter estimate bias appears non‐existent for all estimators. Results also show that ML and GLS estimated standard errors are biased downward. For ADF no such standard error bias was found. The CVM estimator appears to work well when applied to severely skewed variables that had been dichotomized. ML and GLS results for a kurtosis only case showed no distortion of chi‐square or parameter estimates and only a slight downward bias in estimated standard errors. The results are compared to those of other related studies.
Keywords
Affiliated Institutions
Related Publications
Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification.
This study evaluated the sensitivity of maximum likelihood (ML)-, generalized least squares (GLS)-, and asymptotic distribution-free (ADF)-based fit indices to model misspecific...
Consistent Partial Least Squares for Nonlinear Structural Equation Models
Partial Least Squares as applied to models with latent variables, measured indirectly by indicators, is well-known to be inconsistent. The linear compounds of indicators that PL...
How Much Should We Trust Differences-In-Differences Estimates?
Most papers that employ Differences-in-Differences estimation (DD) use many years of data and focus on serially correlated outcomes but ignore that the resulting standard errors...
Estimating Autocorrelations in Fixed-Effects Models
This paper discusses the estimation of serial correlation in fixed effects models for longitudinal data. Like time series data, longitudinal data often contain serially correlat...
MCMC Methods for Multi-Response Generalized Linear Mixed Models: The<b>MCMCglmm</b><i>R</i>Package
Generalized linear mixed models provide a flexible framework for modeling a range of data, although with non-Gaussian response variables the likelihood cannot be obtained in clo...
Publication Info
- Year
- 1985
- Type
- article
- Volume
- 38
- Issue
- 2
- Pages
- 171-189
- Citations
- 1730
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1111/j.2044-8317.1985.tb00832.x