Abstract
Abstract We consider a linear model with normally distributed but heteroscedastic errors. When the error variances are functionally related to the regression parameter, one can use either maximum likelihood or generalized least squares to estimate the regression parameter. We show that likelihood is more sensitive to small misspecifications in the functional relationship between the error variances and the regression parameter.
Keywords
Affiliated Institutions
Related Publications
Asymptotic Theory for ARCH Models: Estimation and Testing
In the context of a linear dynamic model with moving average errors, we consider a heteroscedastic model which represents an extension of the ARCH model introduced by Engle [4]....
A Nondegenerate Penalized Likelihood Estimator for Variance Parameters in Multilevel Models
Group-level variance estimates of zero often arise when fitting multilevel or hierarchical linear models, especially when the number of groups is small. For situations where zer...
Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation
Traditional econometric models assume a constant one-period forecast variance. To generalize this implausible assumption, a new class of stochastic processes called autoregressi...
Estimation in a Multivariate "Errors in Variables" Regression Model: Large Sample Results
In a multivariate "errors in variables" regression model, the unknown mean vectors $\\mathbf{u}_{1i}: p \\times 1, \\mathbf{u}_{2i}: r \\times 1$ of the vector observations $\\m...
Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of Semiparametric Generalized Linear Models
Summary Recent work by Reiss and Ogden provides a theoretical basis for sometimes preferring restricted maximum likelihood (REML) to generalized cross-validation (GCV) for smoot...
Publication Info
- Year
- 1982
- Type
- article
- Volume
- 77
- Issue
- 380
- Pages
- 878-882
- Citations
- 113
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1080/01621459.1982.10477901