Abstract
We describe a general methodology for the design of large-scale recursive neural network architectures (DAG-RNNs) which comprises three fundamental steps: (1) representation of a given domain using suitable directed acyclic graphs (DAGs) to connect visible and hidden node variables; (2) parameterization of the relationship between each variable and its parent variables by feedforward neural networks; and (3) application of weight-sharing within appropriate subsets of DAG connections to capture stationarity and control model complexity. Here we use these principles to derive several specific classes of DAG-RNN architectures based on lattices, trees, and other structured graphs. These architectures can process a wide range of data structures with variable sizes and dimensions. While the overall resulting models remain probabilistic, the internal deterministic dynamics allows efficient propagation of information, as well as training by gradient descent, in order to tackle large-scale problems. These methods are used here to derive state-of-the-art predictors for protein structural features such as secondary structure (1D) and both fine- and coarse-grained contact maps (2D). Extensions, relationships to graphical models, and implications for the design of neural architectures are briefly discussed. The protein prediction servers are available over the Web at: www.igb.uci.edu/tools.htm .
Keywords
Related Publications
A self-organizing map for adaptive processing of structured data
Recent developments in the area of neural networks produced models capable of dealing with structured data. Here, we propose the first fully unsupervised model, namely an extens...
Scene Segmentation with DAG-Recurrent Neural Networks
In this paper, we address the challenging task of scene segmentation. In order to capture the rich contextual dependencies over image regions, we propose Directed Acyclic Graph-...
A Comparison between Recursive Neural Networks and Graph Neural Networks
Recursive neural networks (RNNs) and graph neural networks (GNNs) are two connectionist models that can directly process graphs. RNNs and GNNs exploit a similar processing frame...
10.1162/15324430152748236
This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classification tasks utilising models linear in the parameters. Although this...
Training Recurrent Networks by Evolino
In recent years, gradient-based LSTM recurrent neural networks (RNNs) solved many previously RNN-unlearnable tasks. Sometimes, however, gradient information is of little use for...
Publication Info
- Year
- 2000
- Type
- article
- Volume
- 1
- Citations
- 62
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1162/153244304773936054